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Advantages of Giraph Implementation 
! Giraph is based on Google’s Pregel model (figure 1) 

which has a speed advantage over MapReduce graph 
algorithms 

! Open source software is free of use and is being 
constantly improved by the community 

! Giraph is built on Hadoop so it can process very large 
graphs (Facebook ran a Giraph algorithm on a 1 billion 

edge graph) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process of a Superstep 
! Run user-defined compute function on the vertex 
! Read messages sent to it from the last superstep 

! Send messages to other vertices 
! Modify state of graph 

Methods 

Next Steps 
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Step 1: First we examined Apache’s documentation and code to 
understand how the software worked and to plan our 
implementation. With their provided examples we implemented 
a simple shortest paths algorithm. 

In our work we have leveraged capabilities of Apache's open source software framework, Giraph, to implement a graph pattern matching algorithm. Graphs can be processed intuitively through message passing between vertices 
along edges. The software framework Giraph encapsulates this idea and then runs the algorithm in parallel on top of the Hadoop distributed computing framework to achieve quicker processing times. Our work included leveraging 
the API of Hadoop Giraph to run custom algorithms such as the Subgraph Isomorphism Matching Algorithm. The next step in this project is to link the Giraph implementation to the Accumulo database and run the algorithm on non-

trivial data sets to measure performance. 
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Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

3. THE C++ API

This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.

Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments

define three value types, associated with vertices, edges,

and messages. Each vertex has an associated value of the

specified type. This uniformity may seem restrictive, but

users can manage it by using flexible types like protocol

buffers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which

will be executed at each active vertex in every superstep.

Predefined Vertex methods allow Compute() to query infor-

mation about the current vertex and its edges, and to send

messages to other vertices. Compute() can inspect the value

associated with its vertex via GetValue() or modify it via

MutableValue(). It can inspect and modify the values of

out-edges using methods supplied by the out-edge iterator.

These state updates are visible immediately. Since their vis-

ibility is confined to the modified vertex, there are no data

races on concurrent value access from different vertices.

The values associated with the vertex and its edges are the

only per-vertex state that persists across supersteps. Lim-

iting the graph state managed by the framework to a single

value per vertex or edge simplifies the main computation

cycle, graph distribution, and failure recovery.

3.1 Message Passing

Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and

the name of the destination vertex. The type of the message

value is specified by the user as a template parameter of the

Vertex class.

A vertex can send any number of messages in a superstep.

All messages sent to vertex V in superstep S are available,

via an iterator, when V ’s Compute() method is called in

superstep S + 1. There is no guaranteed order of messages

in the iterator, but it is guaranteed that messages will be

delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over

its outgoing edges, sending a message to the destination ver-

tex of each edge, as shown in the PageRank algorithm in

Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier

of a non-neighbor from a message received earlier, or ver-

tex identifiers could be known implicitly. For example, the

graph could be a clique, with well-known vertex identifiers

V1 through Vn, in which case there may be no need to even

keep explicit edges in the graph.

When the destination vertex of any message does not ex-

ist, we execute user-defined handlers. A handler could, for

example, create the missing vertex or remove the dangling

edge from its source vertex.

3.2 Combiners

Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some

cases with help from the user. For example, suppose that

Compute() receives integer messages and that only the sum

matters, as opposed to the individual values. In that case the

system can combine several messages intended for a vertex

V into a single message containing their sum, reducing the

number of messages that must be transmitted and buffered.

Combiners are not enabled by default, because there is

no mechanical way to find a useful combining function that

is consistent with the semantics of the user’s Compute()
method. To enable this optimization the user subclasses

the Combiner class, overriding a virtual Combine() method.

There are no guarantees about which (if any) messages are

combined, the groupings presented to the combiner, or the

order of combining, so combiners should only be enabled for

commutative and associative operations.

For some algorithms, such as single-source shortest paths

(Section 5.2), we have observed more than a fourfold reduc-

tion in message traffic by using combiners.

3.3 Aggregators

Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value

to an aggregator in superstep S, the system combines those

values using a reduction operator, and the resulting value

is made available to all vertices in superstep S + 1. Pregel

includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum
aggregator applied to the out-degree of each vertex yields the
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Figure 1: Pregel Algorithm for Largest Value 

Subgraph Isomorphism Matching Algorithm 
 

 
 

Input: Graph G, Walk W 
See Figure 2. 

Output: Set of matching sub- 
graphs within G. 

  
 

Step 2: Use knowledge of software structure to reformat the 
program to run the subgraph matching algorithm. 

Giraph was set up to do computation processes that are more 
similar to that of the Simple Shortest Paths Algorithm than the 
Subgraph Isomorphism Matching Algorithm. To run this slightly 
different computation process on Giraph we would have to take 
an alternate route. 

Pattern: The pattern of vertex and 
edge types must be stored somewhere. 
This additional constraint is handled 
by the GiraphJobWithPattern class 
which we wrote to implement a 
pattern as a configuration variable. 
Graph: The graph does not change at 
all so the compute function simply 
waits till a vertex says it knows a 
matching walk and then it tells 
WorkerContext class to keep track of 
all the matching walks from the 
worker. 
Output: Normally in a Giraph 
program a client writes an output 
class and links it to GiraphJob. 
GiraphJob then automatically calls it 
on the graph. Here we do not want to 
output the graph, we want a subset of 
the graph and so we output from the 
WorkerContext class. 

Optimization: The current implementation of the algorithm does 
not change based on the metrics of the graph. For example if 
Pattern P (figure 4) exists such that the second vertex type (green) 
occurs once in the target graph(figure 5) while the first vertex type 
(blue) occurs 1000000 times then our message passing portion of 
the algorithm would be very inefficient(figure 6). We would send 
at least 1000000 messages when we would only need to send 1
(figure 7). 

Implement Accumulo: We need to move from the current flat file 
implementation to the more practical Accumulo DB 
implementation as seen in figure 3. 

Figure 3: Accumulo DB Implementation 

Figure 4: Pattern P of blue node with edge to green node 

Figure 6: Message passing in current algorithm 

Figure 7: Message passing in optimized algorithm 

Figure 5: Graph G with many blue nodes and 1 green Figure 2: Example of a subgraph to be 
matched. Must be converted to a walk for the 

algorithm to work. 

Input Pattern P: Superstep 4 is the final 
superstep. All the messages 
sent from superstep 3 will 
match the vertex type of their 
destination which is the last 
step of the pattern. From here 
the code outputs all 9 matching 
subgraphs. Superstep 4 sends 
no messages and all vertices 
vote to halt. 
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